Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions Article - Mars 2018

Malo Robin, Noee Dumait, Maria Amela-Cortes, Claire Roiland, Maxime Harnois, Emmanuel Jacques, Hervé Folliot, Yann Molard

Malo Robin, Noee Dumait, Maria Amela-Cortes, Claire Roiland, Maxime Harnois, Emmanuel Jacques, Hervé Folliot, Yann Molard, « Direct Integration of Red-NIR Emissive Ceramic-like AnM6Xi8Xa6 Metal Cluster Salts in Organic Copolymers Using Supramolecular Interactions  », Chemistry - A European Journal, mars 2018, pp. 4825-4829. ISSN 0947-6539

Abstract

Hybrid nanomaterials made of inorganic nanocomponents dispersed in an organic host raise an increasing interest as low-cost solution-processable functional materials. However, preventing phase segregation while allowing a high inorganic doping content remains a major challenge, and usual methods require a functionalization step prior integration. Herein, we report a new approach to design such nanocomposite in which lead-free and cadmium-free ceramic-like metallic nanocluster compounds are embedded at 10 wt % in organic copolymers, without any functionalization. Homogeneity and physical stability are ensured by weak interactions occurring between the copolymer lateral chains and the nanocluster compound. Photophysical studies show that the intrinsic properties of the native cluster (absolute quantum yield of around 0.5, phosphorescence lifetime) are fully retained in the nanocomposite. Hybrids could be ink-jet printed and casted on a blue LED. The proof-of-concept device emits in the Red-NIR area and generates singlet oxygen, of particular interest for lightings, display, sensors or photodynamic based therapy applications.

Voir la notice complète sur HAL

Actualités