Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes Article - Janvier 2017

Christophe Buet, Bruno Després, Emmanuel Franck, Thomas Leroy

Christophe Buet, Bruno Després, Emmanuel Franck, Thomas Leroy, « Proof of uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes  », Mathematics of Computation, janvier 2017. ISSN 0025-5718

Abstract

We prove the uniform AP convergence on unstructured meshes in 2D of a generalization, of the Gosse-Toscani 1D scheme for the hyperbolic heat equation. This scheme is also a nodal extension in 2D of the Jin-Levermore scheme described in [18] for the 1D case. In 2D, the proof is performed using a new diffusion scheme.

Voir la notice complète sur HAL

Actualités